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Overview

* Recap

+ Adaptive Beamforming
— Adaptive beamforming goal & set-up
— LCMV beamformer
— Generalized sidelobe canceler

* Multi-channel Wiener filter for multi-
microphone noise reduction (ispeech enhancement)
— Multi-microphone noise reduction problem
— Multi-channel Wiener filter (=spectral+spatial filtering)
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Recap 1

Classification:
Fixed beamforming:

Data-independent, fixed filters F,,

e.g. matched filtering, superdirective, ...
Adaptive beamforming:

Data-dependent filters F,

e.g. LCMV-beamformer, generalized sidelobe canceler
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Recap 24

Data model: source signal

» Microphone signals are filtered versions of source
signal S(w) at angle 6

dir. pattern ~ Pos.-dep. phase shift
f_/%

,_/% "
Y (0,0)=H, (0,0). e’ | S(w)

+ Stack all microphone signals (m=1..M) in a vector
Y(w,0)=d(®,0).S(w)

d(w,0)= [H1 (@,0) PO H,(0,0)e ij(e)]T

d is 'steering vector’
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Recap s

Data model: source signal + noise
» Microphone signals are also corrupted by additive noise

N(@)=[N,(®) N,(@) .. Ny(@]
Noise correlation matrix is
D, (0) = E{N(@).N(w)"}
- Output signal after “filter-and-sum’ is

Z(w,0) = iF;(a)).Ym (@,0) = F" (0).Y(0,0) = {F" (0).d(w,0)}.S(0) + F" (0).N(w,0)

m=1
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Recap 44

Definitions:
» Array directivity pattern = “transfer function’ for source signal at ¢

H(w,0)=F"(w).d(w,0)

» Array Gain = improvement in SNR for source signal at 8

SNR,,..  [F"(@)d(,0)f

G(a), 0) — output — —
SNR, F' (o) I, . () F(o)

nput noise

White Noise Gain
=array gain for spatially uncorrelated noise

Directivity

=array gain for diffuse noise

L (0) = sinc(

o fi(d;—d)
@
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Overview

» Adaptive Beamforming
— Adaptive beamforming goal & set-up
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Adaptive beamforming Goal & Set-up

» Adaptive filter-and-sum structure:
— Aim is to minimize noise output power, while maintaining a fixed

response for a given angle g (=assumed source signal angle)
(plus possibly other linear constraints, see below)

— This is similar to the operation of a matched filter beamformer
(in white noise) or superdirective beamformer (in diffuse noise)
see Chapter-3 (**) p.26 & 36
but now noise field is unknown & adapted to
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Adaptive beamforming Goal & Set-up

» Adaptive filter-and-sum structure:
— Will use (adaptive) FIR filters :

f=l7 & £
_ T _ < T fm:[fm,() fm,1 fm,N—l]T
[k]=£"y[k]1=D £y, [k]
m=1

y[k][y{[k] VI . yL k]

Y E=[ya k] yalk-1 .. y[k-N+1]
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Overview

+ Adaptive Beamforming

— LCMV beamformer

DASP Version 2023-2024 Chapter-4: Adaptive Beamforming & Multi-Channel Noise Reduction




LCMV beamformer

LCMV = Linearly Constrained Minimum Variance
— Minimize (source signal+noise) output power (=‘variance’) z[K] (see ‘Note’)

min Eiz°[k]j=minf" R [k]-flR [k]= E{ylk].ylk]"}

— Subject to (J) linear constraints to avoid source signal cancellation

C'f=b f e R"™ CeR"™ beR’

Example: fix array directivity pattern for angle g at J sample freqs w;

Lecture-3 p22

Fl(w)d(w,y) = d(o.yp)f=1 i=1.J

Note: For J=» oo, constrained output power minimization corresponds to constrained
noise output power minimization (if source signal angle is equal to p). (why?)
Hence, this LCMV formulation is appropriate for cases where R,y can be estimated,
while Rnn can not be estimated separately.

When the source signal is a speech signal, where Ry, is observable during speech
pauses, then R,, can be used instead of Ry, in the LCMV formulation (see p.21).
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LCMV beamformer

LCMV = Linearly Constrained Minimum Variance
— Minimize output power z[K]:

min £yz°[k]j=minf" - R, [k]-fWR [k]= E{ylk].ylk]"}

— Subject to (J) linear constraints to avoid source signal cancellation

C'f=b f e R"™ CeR"™ beR’

— Solution is (obtained using Lagrange-multipliers, etc..):
-l T -1 !
f, =R[k]-C-(C" -R[k]-C)'b
This can be computed for each time k: first estimate Ry, "[K], etc..
But would rather have a truly recursive algorithm, see next slides

— PS: Compare to Chapter-3, p.26 & 36 (frequency domain & J=1, R, €2>R,)
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Overview

» Adaptive Beamforming

— Generalized sidelobe canceler
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Generalized sidelobe canceler (GSC)

GSC = Adaptive filter solution for LCMV-problem

Constrained optimisation is reformulated as a constraint pre-processing,
followed by an unconstrained optimisation, as follows:

— LCMV-problem is

minf" R, [k]-f, C"-f=bJf c R CeR"™ beR’

— Define “blocking matrix’ C,, columns spanning the null-space of C

— Define ‘quiescent response vector’ f, satisfying constraints

f,=C(C".C)"b

— Parametrize all f's that satisfy constraints (verify!)

i.e. filter f can be decomposed in a fixed part f, and a variable part C,. f
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Generalized sidelobe canceler (GSC)

GSC = Adaptive filter formulation of the LCMV-problem

Constrained optimisation is reformulated as a constraint pre-processing,
followed by an unconstrained optimisation, as follows:

— LCMV-problem is

mt:infT,RW[k].f’ CT-f=b femm,cemme’be%J

— Unconstrained optimization of f, :

min, (f,—~C,f,)" R [k].(f,-C,f,)

(MN-J coefficients)
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Generalized sidelobe canceler

GSC (continued)

2
R, [K1= EQYIKLYIKT) ~dih) 571
— —

min, (f, - C,f) R [k](, -Cf)=..= min, E{ (YIKI"£) - (yIKT".C ) E)| }

— Hence unconstrained optimization of f, can be implemented as an
adaptive filter (adaptive linear combiner), with filter inputs (=‘left-
hand sides’) equal to pEIESLINY and desired filter output (='right-

hand side’) equal to
[k]=y[k]" f,

— Example: LMS algorithm
f,[k+1]=1,[k]+ u.CL y[k)(£] .y[k]- y[k].C,£,[k])
—_— —

%,_/
yIk] dlk] gk

Version 2023-2024 Chapter-4: Adaptive Beamforming & Multi-Channel Noise Reduction




Generalized sidelobe canceler

GSC then consists of three parts:

+ Fixed beamformer (cfr. f, ), satisfying constraints (LC") but not yet
minimum variance (‘MV’) ), creating “source signal reference’

Blocking matrix (cfr. C,), beamformers with null response for angle m
(at sampling frequencies) (cfr. C’.C,=0), creating MN-J "noise references’

Multi-channel adaptive filter
(linear combiner)

your favourite one, e.g. LMS

X(MN~J) :
PS: (AR - large matrix
complexity O(MN.(MN-J))
even with LMS for f,
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Generalized sidelobe canceler

A popular & cheaper GSC realization is as follows

ignore ignore ignore  speech
reference
PR Postproc

" Noise
. references

Fixed Microphone
beamformer array

Multi—channel
adaptive filter

Note that some reorganization has been done:

The blocking matrix now generates (typically) M-1 (instead of MN-J) noise
references.

The multichannel adaptive filter performs FIR-filtering on each noise reference
(instead of merely scaling in the linear combiner) (=complexity O((M-1)N) for LMS)

Philosophy is the same, mathematics are different (details on next slide).
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Generalized sidelobe canceler

A popular & cheaper GSC realization is as follows (continued)
» Blocking matrix

— Creating (M-1) independent noise references by means of (M-1)
beamformers with null response for angle g

Different possibilities, e.g.

f:=[ 1111 ] (w=90, i.e. ‘broadside steering’)

!! -

,}%’ TN
/
lo“ /?’ i IIII
IIIIIIII/;Z’/I; '“ ,//%;/ ‘

50 13 s 180
Angle (deg)
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Generalized sidelobe canceler

» Math details: (w=90, i.e. ‘broadside steering’)

y[k] CT y[k] C a,permuted * yljermuted[k]
Yol K1= [y [K] ¥ =11 oyl lk—L+11]
Y K1=[nlk] w0kl .. [k

select “sparse’ ~0 .. 0
blocking matrix CZ 0
such that : =

0o .. C!
ViK1 =[F0u k] Fhk=11 . §i,k-L+1]
Sz‘le [k]= Yir [£] | =input to multi-channel adaptive filter

=use this as blocking matrix now
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Generalized sidelobe canceler

* Problems of GSC:

— Impossible to reduce noise from angle yp (cfr. constraint)

— |f steering vectors d(w;,y) (see p.11) are not accurately known (e.g.
due to inaccurate source position or reverberation), will have source

signal ‘leakage’ into noise references, which can lead to source
signal cancellation by the adaptive filter.

Therefore, to avoid source signal cancellation, adaptive filter should
only be updated when no source signal is present

(i.e. in noise-only periods).

Effectively, thi rresponds to replacing Ry, by Ry, in p.11 (and
following slides)
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Overview

* Multi-channel Wiener filter for multi-
microphone noise reduction (/speech enhancement)
— Multi-microphone noise reduction problem
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Multi-Microphone Noise Reduction Problem

compare to Chapter-2

s[k] speech source

(some) speech estimate

microphone signals

7.1 Rl Sl 1= 1.
|

speech part  noise part

noise source(s)

M= number of microphones
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Multi-Microphone Noise Reduction Problem

Will estimate speech
part in microphone 1

(") (*")

yulkl=s,[kl+n,[k],m=1.M

(*) Estimating s[k] is more difficult, would include dereverberation

(**) This is similar to single-microphone model (Chapter-2), where additional
microphones (m=2..M) help to get a better estimate
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Multi-Microphone Noise Reduction Problem

- Data model: Y(o) =8(w)+N(@)
(frequency domain) =d(®w).S(w)+N(w)

Y@ [ H@) N, (@)
i N, (o)

(@)

Yy (0)| [H, (o) Ny (@)

h) |_| Hy@) |

See Chapter-3 on multi-path propagation (with q left out for conciseness)

H(w) is complete transfer function from speech source position to

m-the microphone
No prior knowledge assumed here!

Version 2023-2024 Chapter-4: Adaptive Beamforming & Multi-Channel Noise Reduction 25/40

Overview

* Multi-channel Wiener filter for multi-
microphone noise reduction (/speech enhancement)

— Multi-channel Wiener filter (=spectral+spatial filtering)
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Multi-Channel Wiener Filter (MWF)

» Data model:

Y(w)=d(w).S(w)+N(w)

» Will use linear filters to obtain speech estimate

S(®)=> F.(0)Y,(0)=F" (0).Y(»)

m=1

» Wiener filter (=linear MMSE approach)

ming, , E {‘S1 (w)—F" (w) -Y(CU)‘Z}

Note that (unlike in DSP-CIS) "desired response’ signal S1(w) is unknown here (!)
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Multi-Channel Wiener Filter (MWF)

» Wiener filter solution is (see DSP-CIS)

F(0) = E{Y(@).Y" (@)} E{Y(0).5(w)}.

autocorrelation crosscortelation

(with E{S(w)wr(w)} =0)

= E{Y(a)).YH(w)}".(E{Y(w).YH(w)} - E{N(w).N”(w)}).

compute during speech+noise periods

N : compute during noise-only periods
— All quantities can be estimated !

— Special case of this is single-channel Wiener filter formula (Chapter-2)
— In practice, use alternative to ‘subtraction’ operation (see slide 32)
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Multi-Channel Wiener Filter (MWF)

« MWEF combines spatial filtering with
single-channel spectral filtering (as in chapter-2) :

Y(@)
—r—
Y (o)
Y, (o)

= d(w) .S(w)+N((w)
stee;;g’:e‘ctor Ei’s?

Y, ()

E{N)N"(0)}=®,, (0)
then...
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Multi-Channel Wiener Filter (MWF)

...then it can be shown that
F(w)=a(w).®' (w).d(w)
R/

noise

scalar F(w)

D@ RO RO ()] represents a spatial filtering (*)

noise

Compare to superdirective & matched filter beamforming (Chapter-3)
— Matched filter beamf. maximizes array gain in white noise field

—  Superdirective beamf. maximizes array gain in diffuse noise field
— MWF maximizes array gain in unknown (!) noise field.

MWEF is operated without invoking any prior knowledge (steering

vector/noise field) ! (the secret is in the voice activity detection... (explain))

(*) Note that spatial filtering can improve SNR, spectral filtering never improves SNR
(at one frequency)
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Multi-Channel Wiener Filter (MWF)

...then it can be shown that
F(w) = a(a)).CI);iise (w).d(w)
—_—

scalar F(w)

@ F(w)=d>;;se(w)_d(a)) represents a spatial filtering (*)

@ represents an additional spectral ‘post-filter’

i.e. single-channel Wiener estimate of S;(w) (Chapter-2 p.9)
applied to output signal of spatial filter (...prove it!)

e E{S (). F" (). Y ()} _ || ] ()

E{‘I_TH(w).Y(w)‘z} &2, s +1
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Multi-Channel Wiener Filter (MWF)

F(w) = E{Y(w).YH(w)}'l.(E{Y(a)).Y”(w)} - E{N(w).NH(w)}).e1

* Correlation matrices

E{Y(0).Y"(w)} and E{N(w)N"(w)}

are estimated in each frame by averaging over a number of
previous frames, possibly with exponential weighting, i.e.

frame-i frame-(i-1) frame-i
—— ——

) =A% )

& + (1 - /12).Y(a)).YH (a)) Update in speech+noise frames

s&n
A

=2\ 0

noise noise

+ (1 - )\,2). N((U).NH (a)) Update in noise-only frames
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Multi-Channel Wiener Filter (MWF)

F(w) = E{Y(a)).YH(a))}'l.(E{Y(a)).YH(a))} - E{N(a)).NH(a))}).el

* Note that (in the above formula)

E{Y(0) Y" (@)} - E{N(w0)-N" ()} = E{S(»)-8" ()}
=d(w)- E{S(0) 5" (w)}-d" (0)

is a positive-definite rank-1 matrix, whereas (with estimated matrices)
)

noise

is generally not rank-1, and often not positive-definite
Hence

_1 2 =
s&n'(q)s&n _(I)noise)'el
generally provides a poor filter estimate..
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Multi-Channel Wiener Filter (MWF)

F(w) = E{Y(w).YH(w)}'l.(E{Y(a)).Y”(w)} - E{N(w).NH(w)}).el

* A better procedure (v1.0) could be as follows

F(w) = o7 (ci>

s&n* 'el

speech )

where ¢specch 1S @ rank-1 matrix estimated (in each frame) as

A

speech

= argmin “(Ci)s&n - (i)noise) - (D“

rank(®)=1

2
F
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Multi-Channel Wiener Filter (MWF)

F(w) = E{Y(a)).YH(a))}'l.(E{Y(a)).YH(a))} - E{N(a)).NH(a))}).el

* An even better procedure (v2.0) is as follows
ﬁ‘(w) = (i);;cn'(CADspeech)'el
where ¢speech IS @ rank-1 matrix estimated (in each frame) as

2

(i)mise) _ q)).(i)-mz d —H”? pH2

noise F noise noise ~ noise

> = argmin, | o2 .((‘i>

speech noise s&n
rank(®)=1

which now also includes a ‘noise whitening’ operation

(making the estimation also immune to, for instance, scalings of the microphone signals)
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Multi-Channel Wiener Filter (MWF)

F(w) = E{Y(w).YH(w)}'l.(E{Y(a)).Y”(w)} - E{N(w).NH(w)}).e1

» Solution is (for v2.0) is based on
Generalized Eigenvalue Decomposition
of matrix pair {q)l\s&n, ¢Anoise} :

2 H . H

cI)s&n =0 Es&n 0" =0 dlag{Gs&n,l 'O genn ""’Gs&n,M}. 0 aka

i —-0- 0" 20- di .01 o L D
q)noise - Q Znoise Q - Q dlag{anoise,l’Unoise,Z""’anoise.M} Q JOInt dlagonallzatlon

where Q is an invertible matrix

This correspondes to an eigenvalue decomposition of o d

noise ~ s&n °

~ a (o} O O,
o' P =Q*H.271 > 'QH=Q’H'diag{ il STl s&n,M}.QH

noise ~ s&n noise " s&n

. . o_.
noise,| noise,2 noise, M

g Us&n 1 as&n 2 as&n M
where eigenvalues can be sorted such that ~ = e :
o

noise, ! noise,2 noise, M
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Multi-Channel Wiener Filter (MWF)

F(w) = E{Y(a)).YH(a))}'l.(E{Y(a)).YH(a))} - E{N(a)).NH(a))}).el

*  With this §speech (in v2.0) becomes (proof omitted)

(i)speech =0 diag{gs&n,l - Gnoise,l’o""’o} : QH = (8 el) ’ (Gs&n,l = O oise.1 ) (O € )H
=

estimate of steering vector
(up to scalar)

and then
l,i‘(w) = qA);le ’ (qA)speech ) ’ e1

(o} -0 .
=0 diag{—tel sl 00} 0" e,

s&n,l

= (Us&n,l - Onoise,l . [QH]“) . Q—H . el
-

s&n,l principal eigenvector

o
scalar Of i Pgn

(instead of 1st microphone,

see page 24) then first line
has e, last line has [Q"]4«

PS: If kth microphone is
and e4

reference microphone
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Multi-Channel Wiener Filter (MWF)

~ (o) -0 .
F(w)= (=l el o] ). 0",
s&n,1 principal eigenvector

i
scalar of @i Pgn

» Scalar is representative of spectral filtering:
Compare with spectral subtraction formulas...
Eigenvalues (0sn/0n0ise) represent signal-to-noise ratios

» Eigenvector is representative of spatial filtering:

-1
noise,l) 1 q)Jmise : (Q ’ el)
(N

s A | Compare to p.30-31

Version 2023-2024 Chapter-4: Adaptive Beamforming & Multi-Channel Noise Reduction




Multi-Channel Wiener Filter: Implementation

* Implementation with short-time Fourier transform (see Chapter-2)
* Implementation with time-domain FIR filtering:

Y lkl=s,[kl+n,[k]

Yolkl=[ y,[K] y,[k=11 .. y,[k-L+1] |

o filter
nlk 50k1=Y y [k].E )
[ 9l ;y"’[ T coefficients
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Multi-Channel Wiener Filter: Implementation

* Implementation with time-domain linear filtering:
e=lf & .. f]

vIkl=lyite ikl . i)

min, E{}s,[k] —ZT[k] £‘2}

Solution is...

compute during speech+noise periods

compute during noise-only periods
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